カテゴリー: 流体力学セミナー

  • 流体物理学ゼミナール2010/02/18

    流体力学セミナー流体力学セミナー

    数理解析研究所 流体力学セミナーのご案内です.

    御来聴歓迎.

    ===========================================================

    流体力学セミナー 2010

    #今回は木曜日の開催となっています.ご注意ください.

    #数理解析研究所の建物耐震改修工事のため,場所が京大理学部の
     建物になっています.ご注意ください.

    日時: 2月18日(木) 15:00 から 16:30

    場所: 京大 理学研究科5号館(物理学教室)413号室

    講師: Prof. Sadruddin Benkadda
    (International Institute for fusion Science-Universite
    de Provence, Marseille France)

    題目: Patterns, Intermittent Transport and Universality
    in Convective Turbulence in Magnetic Fusion Plasmas

    概要:Buoyancy-driven flows such as thermal convection are of great
    importance for a wide range of phenomena in geophysical,
    astrophysical and fusion plasmas [1,2,3]. We consider here
    intermittent aspects of convective turbulence and transport in
    magnetized plasma of magnetic fusion machines such as tokamaks or
    stelerators. These investigations use Direct Numerical Simulation
    (DNS) of Ion Temperature Gradient instability (ITG) which is
    identical to the Rayleigh-Benard thermal convection problem in
    neutral fluids [4,5,6]. Rayleigh-Benard convection in particular
    is a fundamental paradigm for nonlinear dynamics including
    instabilities and bifurcations, pattern formation, chaotic
    dynamics and developed turbulence.

    Using a weakly non-linear analysis, we show that the back-reaction
    on the mean profile is the natural mechanism for saturation and
    suggest that it will stay the main non-linear coupling mechanism
    in the turbulent state. We also will review some basic aspects of
    the interaction between convective cells and a mean flow [7,8]. In
    particular and still along the line of the “defreezing” assumption
    we study the behavior of a model for shear flow instability :
    transient bursts of vorticity flux are generated in this model. We
    briefly discuss the advantage of this kind of formulation compared
    to the “non-normal” operator approach where the mean velocity is
    also assumed frozen .

    An extension of Herring model is derived. It takes into account
    the self-consistent generation of a mean flow. It is shown that
    our model has substantially richer dynamics than the one of
    Herring. In particular the interaction between the convective
    modes and the mean flow leads in the turbulent state to a
    transition in the statistical properties of the transport. This
    bifurcation is analogous the so-called soft to hard turbulence
    transition in convection. In the strongly turbulent state,
    intermittent bursts of thermal transport are observed in both
    cases. For the latter regime, the reduced model as well as DNS
    show that the Nusselt number Nu (normalized heat flux) scales with
    the normalized ion pressure gradient Ki as Nu ‾ Ki1/3[6]. Since
    the Rayleigh number for ITG turbulence is proportional to Ki, the
    Nusselt number scaling for ITG turbulence is thus similar to the
    classical Globe & Dropkin scaling for Rayleigh-Benard convection
    in neutral fluids.

    References:
    [1]S. Benkadda, P. Beyer, N. Bian et al, Nuclear Fusion 41, 997
    (2001)
    [2] P. Beyer, S. Benkadda, X. Garbet and P.H. Diamond, Phys. Rev
    Letters 85, 4892 (2000).
    [3] Amita Das, Abhijit Sen, and Predhiman Kaw, S. Benkadda and
    Peter Beyer, Physics of Plasmas 12, 032302 (2005)
    [4] K. Takeda, S. Benkadda, S. Hamaguchi and M. Wakatani, Physics
    of Plasmas 11, 3561-3571 (2004)
    [5] K. Takeda, S. Benkadda, S. Hamaguchi and M. Wakatani, J.
    Plasma Fusion Res 6 570 (2004)
    [6] K. Takeda, S. Benkadda, S. Hamaguchi, M. Wakatani, Physics of
    Plasmas 12, 052309 (2005)
    [7] N. Bian, S. Benkadda, X. Garbet, O. Garcia, J. Paulsen, Physics
    of Plasmas, 10, 1382, (2003)
    [8] O. Garcia, N. Bian, J. Paulsen , S. Benkadda and K. Rypdal,
    Plasma Physics and Controlled Fusion 45, 919-932, (2003)

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2010/01/12

    流体力学セミナー流体力学セミナー

    ===========================================================

    流体力学セミナー 2010

    #今回は火曜日の開催となっています.ご注意ください.

    #数理解析研究所の建物耐震改修工事のため,場所が京大理学部の
     建物になっています.ご注意ください.

    日時: 1月12日(火) 15:00 から 16:30

    場所: 京大 理学研究科5号館 413号室

    講師: 大木谷 耕司 (Sheffield大学, UK)

    題目: 非局所バーガース方程式: 最大値原理とハミルトンヤコビ方程式」

    概要:ナビエストークス方程式が正則な解を持つことは、物理・工学分野
    では前提とされているが、その数学的な証明はない。ここでは、こ
    の問題に対して、何らかの示唆を得るべく、2つの簡単な数学的モ
    デルの考察を行う。(モデルに物理的意味は無い)

    通常の手法での困難の原因は、次の2点に尽きる。

    (1) エンストロフィーに対する不等式が過大評価にすぎる。
    (2) 圧力項があるため、最大値原理が適用できない。

    3次元バーガース方程式(正則)にも (1) の困難はつきまとうが、
    (2)の困難はない。非局所項がある場合、最大値原理は一般に適用できな
    いが、この事は直ちにこの種の不等式が破綻することを意味しない。こ
    の点を吟味するため、1次元バーガース方程式に圧力を模倣する非局所的
    項を加え、解の正則性がどう変化するか数値計算を行う(with M. Dowker).

    また、1次元バーガース方程式は、ハミルトンヤコビ方程式を介して可積
    分となることは周知である (Forsyth-Florin-Hopf-Cole 変換)。2次元以
    上の速度場のヘルムホルツ分解においては、ポテンシャル成分の他に非
    圧縮成分が現れる。前者の成分については多次元バーガース方程式に対
    する同様の解法として既知である。ここでは、後者のソレノイダル成分
    を支配する、2ないし3次元の非圧縮性流体方程式の別の表現として、非
    局所ハミルトンヤコビ方程式を導出する。さらに、対応する1次元版の非
    局所ハミルトンヤコビ方程式を考え、その振舞いを数値計算で検討する。

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2009/11/30

    流体力学セミナー流体力学セミナー

    ===========================================================

    流体力学セミナー 2009

    #数理解析研究所の建物耐震改修工事のため,場所が京大理学部の
     建物になっています.ご注意ください.

    日時: 11月30日(月) 15:00 から 16:30

    場所: 京大 理学部6号館 203号室

    講師: Abraham C.-L. Chian
    (National Institute for Space Research (INPE), Brazil
    & RIMS, Kyoto University)

    題目: Nonlinear dynamics of fluids and plasmas: On-off intermittent
    turbulence

    概要:The amplitude and phase dynamics of coherent structures in
    intermittent turbulence in fluids and plasmas is studied using
    direct simulations of Navier-Stokes equations and
    magnetohydrodynamics equations, as well as in-situ observations of
    atmospheric and interplanetary turbulence. Nonlinear surrogate
    techniques are applied to quantify the degree of phase
    synchronization in simulated and observed data of fluid and plasma
    turbulence. We adopt the complex Morlet wavelet to characterize
    the amplitude dynamics by computing the Local Intermittency
    Measure, and to characterize the phase dynamics by computing a
    phase coherence index. Our techniques are able to detect and
    measure coherent structures in magnetic field turbulence in
    unshocked and shocked solar wind, as well as in atmospheric
    turbulence above and within the Amazon forest canopy.
    Intermittent mean-field dynamo is investigated using numerical
    modeling of magnetohydrodynamic turbulence driven by helical
    forcing. The importance of phase synchronization and on-off
    intermittent turbulence in the variability of stellar magnetic
    field and its impact on the dynamics of climate and space weather
    of a planet and exoplanet is discussed.

    Chian ACL, Miranda RA. Cluster and ACE observations of phase
    synchronization in intermittent magnetic field turbulence: a
    comparative study of shocked and unshocked solar wind. Ann.
    Geophys. 27, 1789, 2009.

    Chian ACL, Han M, Miranda RA, Shu, C, Valdivia, JA. The planetary
    -exoplanetary environment: a nonlinear perspective. Adv. Space
    Res., in press, 2010.

    Chian ACL, Miranda RA, Koga D, Bolzan MJA, Ramos FM, Rempel EL.
    Analysis of phase coherence in fully developed atmospheric
    turbulence: Amazon forest canopy. Nonlinear Proc. Geophys. 15, 567,
    2008.

    Koga D, Chian ACL, Miranda RM, Rempel EL. Intermittent nature of
    solar wind turbulence near the Earth’s bow shock: Phase coherence
    and non-Gaussianity. Phys. Rev. E 75, 046401, 2007.

    Koga, D, Chian ACL, Hada T, Rempel EL. Experimental evidence of
    phase coherence of magnetohydrodynamic turbulence in the solar
    wind: GEOTAIL satellite data. Phil. Trans. Royal Soc. London-
    Math. Phys. Sciences 366, 447, 2008.

    Rempel EL, Proctor MR, Chian ACL. Intermittent nonlinear dynamo in
    compressible magnetohydrodynamics. Monthly Not. Royal Astron. Soc.,
    in press, 2009.

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2009/10/26

    流体力学セミナー流体力学セミナー

    ===========================================================

    流体力学セミナー 2009

    #数理解析研究所の建物耐震改修工事のため,場所が京大理学部の
     建物になっています.ご注意ください.

    日時: 10月26日(月) 15:00 から 16:30

    場所: 京大 理学部6号館 203号室

    講師:下川倫子 氏
       (摂南大学工学部)
       
    題目: コーヒー滴がつくる消滅フラクタル

    概要:フラクタルパターンはヴィスカスフィンガリングやバクテリア
     コロニー、電解析出といった実験で観察されてきた。これらのパター
     ンは点や線から始まり、分岐を繰り返しながら面を覆いつくし、フラ
     クタル構造を形成する。今回、発表者は牛乳の上に濃いコーヒーの滴
     を置く実験で、牛乳表面にコーヒー溶液が描くフラクタルパターンを
     発見した。このフラクタルパターンは牛乳表面に拡散したコーヒー溶液
     が次々と沈むことによってできる新しいタイプの消滅フラクタルである。
     密度相関関数法とボックスカウント法によるフラクタル解析から、パ
     ターンを特徴づけるフラクタル次元は時間、密度に依存せず、一定値
     1.88±0.06をとることが分かった。また、表面パターンの密度は時間
     と共に指数関数的に減少し、その時定数はフラクタル解析が可能とな
     る70秒と一致していたことから、表面に拡散したコーヒーが十分に沈
     み込むことが消滅フラクタルの形成にとって重要であることがわかった。

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2009/10/19

    流体力学セミナー流体力学セミナー

    ===========================================================

    流体力学セミナー 2009

    日時: 11月 2日(月) 15:00-16:30

    場所: 京大 理学部6号館 203号室

    講師: Prof. Abraham C.-L Chian
        National Institute for Space Research (INPE), Brazil
        RIMS, Kyoto Univ.
       
    題目: Nonlinear dynamics of long waves: On-off spatiotemporal intermittency

    概要:Long waves are relevant for shallow-water fluids and drift turbulence
    in plasmas. We discuss the origin of on-off spatiotemporal intermittency in
    high-dimensional models of nonlinear long waves governed by the
    regularized long-wave equation (Benjamin-Bona-Mahony equation) and Kuramoto
    -Sivashinky equation. First, we analyze the spatiotemporal dynamics and
    structure of chaotic saddles before, at the onset, and after a crisis, at
    the transition from temporal to sptatiotemporal chaos. The links between
    chaotic saddles, crisis and spatiotemporal intermittency are elucidated.
    Prior to the transition to spatiotemporal chaos, a spatiotemporally
    chaotic saddle is responsible for chaotic transients that mimic the
    dynamics of the post-transition attractor. At the onset of crisis, the
    temporal chaotic attractor loses its stability and is converted to a
    temporally chaotic saddle. After the onset of spatiotemporal chaos, we
    identify temporally and spatiotemporally chaotic saddles which are
    responsible for the laminar and bursty phases in the spatiotemporal
    intermittency. In particular, we demonstrate that phase synchronization
    due to multiscale interactions is the origin of on-off spatiotemporal
    intermittency associated with laminar and bursty phases of wave energy
    fluctuations in well-developed spatiotemporal chaos.

    Chian ACL, Rempel EL, Macau EE, Rosa, RR, Christiansen, F.
    High-dimensional interior crisis in the Kuramoto-Sivashinsky equation.
    Phys. Rev. E 65 (Rapid Comm.), 035203, 2002.

    He KF, Chian ACL. On-off collective imperfect phase synchronization and
    bursts in wave energy in a turbulent state. Phys. Rev. Lett. 91, 034102,
    2003.

    He KF, Chian ACL. Critical dynamic events at the crisis of transition to
    spatiotemporal chaos. Phys. Rev. E 69, 026207, 2004.

    Rempel, EL, Chian ACL, Macau EEN, Rosa RR. Analysis of chaotic saddles in
    high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation.
    CHAOS 14, 545, 2004.

    Rempel EL, Chian ACL. Origin of transient and intermittent dynamics in
    spatiotemporal chaotic systems. Phys. Rev. Lett. 98, 014101, 2007.

    Rempel EL, Chian ACL, Miranda RA. Chaotic saddles at the onset of
    intermittent spatiotemporal chaos. Phys. Rev. E 76, 056217, 2007.

    Rempel EL, Miranda RA, Chian ACL. Spatiotemporal intermittency and chaotic
    saddles in the regularized long-wave equation. Phys. Fluids 21, 074105,
    2009.

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2009/10/16

    流体力学セミナー流体力学セミナー

    ===========================================================

    流体力学セミナー 2009

    #場所と時間にご注意ください。
    #本セミナーは京大理物理教室で 10/16 金曜日昼に行います。

    日時: 10月 16日(金) 13:00 から 14:30

    場所: 京大 理学部5号館 413号室

    講師:Ranga Narayanan 氏
    (Director of The Center for Surface Science and Technology,
    University of Florida)
       
    題目: Instabilities due to Phase Change

    概要:Phase change causes instabilities and an example is
    evaporative instability. This has much in common with solidification
    instability, electrodeposition and even viscous fingering instability.
    It is an instability that is driven by nutrient gradients which,
    in this case, are temperature gradients. In the current study we have
    investigated evaporative instability in a variety of configurations.
    There are several ways to view how one might conduct an evaporation
    experiment and in one of these the input variables are the depths of
    fluid layers, the temperature difference across the system and
    the pressure at the top plate. Once these are fixed, the outputs are
    the bifurcation nature and the evaporation and heat transfer rates.
    We present calculations which tell us that when the instability sets
    in the branching can be either a forward or backward pitchfork but
    the evaporation rates are always increased. In this regard the problem
    is quite unlike solidification or electrodeposition. I shall also
    present results that take into account experimental complications
    such as side wall effects and buoyancy. We present detailed physical
    reasoning behind our observations.

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2009/09/07

    流体力学セミナー流体力学セミナー

    流体力学セミナー 2009

    #数理解析研究所の建物耐震改修工事のため,場所が京大物理に
     なっています.ご注意ください.

    日時: 9月7日(月) 15:00 から 16:30

    場所: 京大 理 物理学教室 (理学研究科 5号館) 413号室

    講師: Adrian Constantin 氏
    (Chair of Partial Differential Equations
    Univeristy of Vienna)
       
    題目: Pressure and Particle Trajectories beneath a Stokes Wave

    概要: Consider periodic two-dimensional gravity
    water waves propagating in irrotational flow at
    constant speed at the surface of water with a flat bed.
    Then the pressure in the fluid strictly decreases horizontally
    away from the crest line and strictly increases with depth.
    Moreover, along each streamline the horizontal velocity
    strictly decreases away from the crest line. Some particle
    trajectories are closed orbits but most are looping orbits
    that drift either to the right or the left, depending
    on the presence of an underlying favorable or adverse current.
    These results have been obtained as joint work with Walter
    Strauss.

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2009/07/16

    流体力学セミナー流体力学セミナー

    流体力学セミナー 2009

    日時: 7月16日(木) 13:30 から 15:00

    場所: 京大 理 物理学教室 (理学研究科 5号館) 413号室

    講師: Stuart Coleman 氏 (Imperial Colledge, London)
       
    題目: Transport Properties of Saturated and Unsaturated
    Porous Fractal Materials

    概要: Inviscid, irrotational flow through fractal porous materials is
    studied. The key parameter is the variation of tortuosity with the
    filling fraction of fluid in the porous material. Altering the filling
    fraction provides a way of probing the effect of the fractal structure
    over all its length scales. The variation of tortuosity with filling
    fraction is found to follow a power law for deterministic and
    stochastic fractals in two and three dimensions. A phenomenological
    argument for this scaling of tortuosity with filling fraction phi is
    presented. Numerically calculated values of the exponents show good
    agreement with those predicted from the phenomenological argument for
    both the saturated and the unsaturated model.

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2009/03/16

    流体力学セミナー流体力学セミナー

    ===========================================================

    流体力学セミナー 2009 No.3

    日時: 3月16日(月)15:30から17:00

    場所: 京大数理研 009号室

    講師: 磯部 洋明 氏 (京大宇宙総合学研究ユニット)
       
    題目: 太陽物理学の磁気流体力学的課題

    概要: 現代の太陽物理学の主要な課題は,黒点,コロナ,フレアなどの磁場
    とプラズマの相互作用に起因する様々な活動現象を理解することにあ
    る.人工衛星からの多波長観測と大型計算機の発展による大規模数値
    シミュレーションが両輪となって,太陽物理学は90年代以降飛躍的な
    進展を見せた.本セミナーでは,太陽物理の最新成果と未解決問題を,
    磁気流体力学的な側面を中心に紹介する.

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================

  • 流体物理学ゼミナール2009/03/02

    流体力学セミナー流体力学セミナー

    ===========================================================
    流体力学セミナー 2009 No.2

    日時: 3月2日(月)15:00から16:30

    場所: 京大数理研 009号室

    講師: 和田 浩史 氏 (京大 基礎物理学研究所)
       
    題目: ストークス流のなかでの輸送と運動:コロイドから微生物まで

    概要: Stokes流体中におかれた物体のpassiveおよびactiveな運動
    について考察する。前者の例として、温度勾配によって駆動される
    溶液中のコロイド粒子の泳動現象をとりあげる。後者の例としては
    Spiroplasmaと呼ばれるらせん菌の運動を紹介する。どちらの場合
    も、実験および観測結果は流体力学的アプローチによって定量的に
    説明できることを示す。これらを通じて、微小流体中に運動や変形を
    もたらすための物理的メカニズムを探求する。

    +–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+–+—-+–+–+

    世話人:山田 道夫(京大数理研), 藤 定義(京大),松本 剛(京大理)
    アドバイザー:船越 満明(京大情報学)、水島 二郎(同志社大工)、
    余田 成男(京大理)
    連絡先:山田道夫 yamada@kurims.kyoto-u.ac.jp
    =========================================================